
Democratic Mass Participation of Users in
Requirements Engineering?

Timo Johann and Walid Maalej
University of Hamburg

Hamburg, Germany
{johann, maalej}@informatik.uni-hamburg.de

Abstract—A large part of Requirements Engineering is con-
cerned with involving system users, capturing their needs, and
getting their feedback. As users are becoming more and more
demanding, markets and technologies are evolving fast, and
systems are getting more and more individual, a broad and
systematic user involvement in Requirements Engineering is
becoming more important than ever. This paper presents the
idea of pushing user involvement in Requirements Engineering
to its extreme by systematically delegating the responsibility for
developing the requirements and deciding about future releases
to the crowd of users. We summarize the pros and cons of
this vision, its main challenges, and sketch promising solution
concepts, which have been proposed and used in E-Participation
and E-Democracy. We discussed our vision with ten experts from
the fields of Requirements Engineering, politics, psychology, and
market research, who were partly supportive partly skeptical.

I. INTRODUCTION

Conventional Requirements Engineering typically involves
users in developing and prioritizing requirements through
interviews, surveys, or workshops. Open source projects allow
users to publicly report issues and ideas through bug trackers.
More recently software vendors also started involving users
and collecting their feedback through social media channels.
In particular, app users can easily write reviews about new app
releases, report bugs, rate the app and its features, or request
new features and changes [18]. Such user feedback can be used
for defining the requirements of the system, solving conflicts,
and planning future releases.

Research has shown that user involvement is a major success
factor for software projects. Bano and Zowghi identified about
290 publications that agree about the positive impact of user
involvement and its relationship to system success [1]. Pagano
and Bruegge [17] interviewed developers and found that user
feedback contains important information to improve software
quality and to identify missing features. Recent work also
showed that users are willing to contribute to software projects
and their feedback often contains valuable information for
developers and analysts [7], [18]. In this paper, we discuss
the vision of pushing user involvement to its extreme with
the aim to maximize its impact. The goal is to systematically
and continuously “delegate” the development, discussion, and
decision-making about requirements to the crowd of users. The
domains of politics and market research inspire our vision. User
involvement is the foundation of democratic systems and with
E-Democracy citizens are able to participate in the proposal,

development, and creation of political and legal decisions using
information and communications technology [9].

The contribution of this paper is twofold. First, it summarizes
the main challenges, which need to be addressed for mass and
systematic participation of users in Requirements Engineering
and drafts a research agenda for the field. Second, the paper
draws parallels between Requirements Engineering and E-
Democracy discussing potentials and limitations of using
democratic concepts such as delegated voting and structured
refinement. We discussed our vision and the resulting challenges
with ten experts from Requirements Engineering, politics, and
market research (see Section VII). We conducted face-to-face
interviews each lasting about 30 minutes. The paper also reflects
the discussions along its sections.

The remainder of the paper is structured as follows. Section
II describes the challenges for realizing a mass participation
of users in Requirements Engineering. Section III describes
how fundamental concepts from E-Democracy, in particular
Liquid Democracy [19] can help realizing the vision. In Section
IV we introduce a combination of Liquid Democracy and
Requirements Engineering and how this can help to meet the
challenges. Finally, Section V reviews the related work while
Section VI concludes the paper with a research preview.

II. CHALLENGES OF A MASS PARTICIPATION

1) Scalability - Internet-Scale User Participation: A system-
atic and continuous participation of a large user basis generates
a large amount of unstructured data of different quality. Recent
studies of user reviews in app stores showed that one single
popular app can get several thousands of reviews per day [18].
Analyzing and managing an internet-scale user input requires
a large amount of human resources and a sophisticated tool
support.

One recurrent comment in our discussions with the experts
was that current RE approaches such as interviews and
workshops do not scale to the crowd of users. Interviewed
politicians reported that a higher participation prevents a
quick and flexible consideration of the inputs. A large mass
typically leads to more idleness. Processes take longer and
the management overhead becomes unproportional to the
participation benefits, leading to less motivation of users and
vendors.

2) Motivation - Incentives for Vivid Participations: Moti-
vating people to qualitatively contribute to tasks for which they

IE
E

E
 c

op
yr

ig
ht

ed
 p

ap
er

 - 
A

cc
ep

te
d 

fo
r p

ub
lic

at
io

n 
at

 IE
E

E
 R

E
 2

01
5 

- A
ut

ho
rs

' v
er

si
on

 o
f t

he
 w

or
k 



are not accountable can be very hard [2], [6]. Typical users
neither have contractual obligations nor ethical commitments
to contribute. It is easier to complain and be destructive than to
be constructive [18]. One expert stated: “Who wants change?
Everybody! Who wants to change? Nobody!”

Incentives for motivating users to contribute to Requirements
Engineering can be extrinsic or intrinsic [21]. Extrinsic motiva-
tion includes rewarding users with cash, discounts (e.g. in the
software to which they contribute), or exclusive access (e.g. to
advanced features). One expert stated: “In crowdsourcing they
pay money to people. In this case money also matters”. One
problem with rewards is that it might corrupt users and bias
their input.

In contrast, with intrinsic incentives users contribute for their
own sake. Research has shown that one of the most important
motivational factors for users to contribute to social platforms
is to gain public attention [14]. In politics, transparency is
a major factor for trust and participation. Thus, recognizing
and publicly honoring contributions as well as a continuous
bidirectional feedback with users are important to promote
intrinsic motivation. One expert stated: “Users don’t give
feedback because they don’t know what happens to it”.

Several experts mentioned gamification as a potential ap-
proach to motivate for continuous and high quality contributions.
User involvements would then be designed and integrated
into the requirements process as a game, where users earn
“credits” the more and the better they get involved. Recent
research found, however, that the success of gamification is
rather limited since game concepts wear out and must be
continuously renewed. A gamification approach usually works
only for a specific target group [10].

3) Conflicts - Resolving Unavoidable Conflicts: Negotiating
requirements and tradeoffs is difficult even with a small group
of stakeholders [4]. Typically in conventional – both open
source and commercial – software project settings, a few
people will take the final decisions based on a hierarchy that
is recognized by stakeholders. In companies, when negotiation
techniques fail there are authorities with decisive power to
resolve conflicts. In open source, decisions – e.g. about the
scope and priorities – are typically made by a small number
of core developers [24].

With a large heterogeneous mass of users, conflicts become
the standard rather than the exception. While some users want,
e.g., a red color for the interface, others might prefer blue. If
users feel their input is ignored they might end up frustrated
and stop participating. For example, Wikipedia users often
criticize that debates are won by stamina [16]. Editors who
care more and argue longer and “louder” tend to get their way.
Lanier describes this phenomenon as Digital Maoism. That is,
collective authorship tends to produce mainstream beliefs with
a false sense of authority behind information [13].

4) Representativeness - “Equally” Involving User Groups:
Users are different. They work differently, in different contexts,
and have different needs. If a particular group of users is
over-represented (e.g., having a specific platform or with
specific skills), the participation results might get skewed. In

politics, the analogous problem is a low turnout for votes. If
a whole group does not participate in a vote, the distribution
of the results will not match the actual population distribution.
This phenomenon is called a dictatorship of the activists.
Similarly, in open source communities a benevolent dictator
for life1 refers to a person or a group with the final say in a
discussion (usually the community founder). This often leads
to community fragmentation, e.g. through project forks2.

For avoiding dictatorships of activists we need to motivate
all groups to participate and ensure a representativeness of the
participating sample to the whole user population. Moreover, as
Requirements Engineering involves other stakeholders beside
users (e.g. clients and developers), it seems natural that some
stakeholders or stakeholder groups are more important than
others. This is to consider when balancing the representative-
ness.

In our interviews Requirements Engineering experts were
concerned about achieving high participation rates for all users,
while the interviewed politicians considered the representative-
ness of participating users and their biasless more crucial. One
expert stated: “The task of politics is to provide resources and
instruments for participation. But we cannot enforce the use
of these options." Another expert said: “It is difficult to ensure
that the small group of people who actively write reviews is
representative of the user community at large”.

5) Subjectiveness - Correcting Self Assessment Bias: User
contributions are not necessarily based on rationale and logical
reasoning, in particular since users are not trained like managers,
analysts, and developers. Users might resist to changes of
software even if the advantages are obvious. In human computer
interaction this phenomenon is called Baby Duck Syndrome
[22]. Baby ducks imprint on the first entity they are exposed
and treat it as their mother. Users might behave in a similar
way, judging ideas and innovations by comparing them to what
they know.

Moreover, it is often difficult for users to evaluate themselves,
something known as cognitive bias in psychology. This
may lead to perceptual distortion, inaccurate judgment, or
illogical interpretation [12]. Users might overrate their own
abilities. This pattern was observed in diverse studies while
reading comprehension, operating a motor vehicle, and playing
chess or tennis. The higher the ignorance, the higher is the
self-confidence. This concern has been confirmed by most
interviewed experts, who argued that the mainstream of users
“cannot tell what they want” and that “we have to educate them
first [. . . ] and tell them what a requirement actually means”.

6) Misuse - False Users, Data Security, and Privacy: An
important challenge for a systematic user involvement is to
ensure the protection of vendors’ information and the privacy
of the user’s data. Transparency in the contribution means that
the access to project data is public at least to contributing users.
Unlike in politics, software organizations are competing with

1http://www.artima.com/weblogs/viewpost.jsp?thread=235725
2http://catb.org/~esr/writings/homesteading/homesteading/ar01s16.html

IE
E

E
 c

op
yr

ig
ht

ed
 p

ap
er

 - 
A

cc
ep

te
d 

fo
r p

ub
lic

at
io

n 
at

 IE
E

E
 R

E
 2

01
5 

- A
ut

ho
rs

' v
er

si
on

 o
f t

he
 w

or
k 



others. Opening the requirements processes with requirements
knowledge can be conflicting with business goals.

Similarly, contributing users might share their data, prefer-
ences, or contexts to argue for and explain their opinions and
requests. In particular if user data is representing a minority,
their data might become sensitive and easily misused.

Finally, it is important to ensure the authenticity of the
participation. In social media, e.g., votes can simply be bought
or fake. This phenomenon can become risky since requirements
decisions are crucial to software’s success.

III. THE E-DEMOCRACY APPROACH

Democracy is one of the oldest participatory concepts.
E-Democracy uses Internet and information technology to
promote democracy. We think that concepts from E-Democracy,
when combined with social media, are highly promising to
partly address the challenges of a massive and continuous user
participation in Requirements Engineering.

Liquid Democracy is a participative democracy approach,
being a hybrid form of direct democracy and representative
democracy. Both democracy forms empower people. The
difference is that in direct democracy people directly decide
about all policy initiatives, while in representative democracy,
people elect representatives for a given period of time and
empower them to decide about policy initiatives. Most modern
democracies have a representative form but allow, in some
cases, actions that provide a limited form of direct democracy.
In Liquid Democracy, the term liquid means that the boundaries
between direct and indirect democracy become blurred. In the
literature, it is hard to identify a single original reference to
Liquid Democracy as discussion can be traced back hundreds
of years. However, Paulin [19] and Jabbusch [11] (in German)
gave a good summary of the history of Liquid Democracy
and its application in online systems. We introduce the key
concepts of Liquid Democracy and discuss how the Software
and Requirements Engineering community can adapt them.
Many political parties such as the German Pirate Party use
these concepts and tools that implement them.

A. Structured Collaborative Decision

Similar to issue trackers, user feedback systems, and review
systems, users are able to actively submit proposals, issues,
or ideas at any time – no matter whether these are concerned
with software features, technical issues, tasks, priorities, or
methodologies. Proposals can be made by everyone and do
not have to be fully developed ideas. After submission, they
undergo a discussion and refinement process, to which everyone
is eligible to contribute. Such collaborative processes are also
common in social media, e.g. in Wikis or in Stack Exchange. At
the end of the discussion and refinement, users can vote for or
against the proposal, no matter whether they have contributed
to it or not.

Liquid Democracy often employs collaborative and struc-
tured decision-making processes to allow a collective drafting
while avoiding unsound, dubious or low quality input. However,
no standard process for the discussion and refinement of

proposals and ideas exists. Some tools that implement Liquid
Democracy allow for unlimited discussions without imposing
an endpoint, e.g. Votorola. Others have fixed dates and ballots
and a proposal ends with a final decision. Some approaches
such as LiquidFeedback [3] have a freeze phase between the
discussion and the hold of the ballot. This might be interesting
for Requirements Engineering as some users might not follow
the discussion and might be only interested in the results.

An interesting democratic concept is the use of quorums. A
quorum is the minimum number of “members” that is necessary
for a proposal or an idea to be discussed and qualify for a
decision or vote. In politics quorums are used to ensure that a
ballot with low participation will not result in unrepresentative
majorities. In a software project a quorum can help to reduce
low quality or irrelevant contributions.

With such a process, a user of a restaurant finder app might,
e.g., propose to add a feature for searching restaurants with
accessibility for wheelchairs. The user has to wait for others to
support this proposal, which will probably be feasible as the
idea is sound. After reaching a certain quorum, the discussion
of the details can start and interested users will collaboratively
develop the feature and its requirements. When the discussion
ends, users can vote for or against it regardless whether they
actively participated in the discussion or not.

B. Delegated Voting
Delegated voting extends conventional voting. Every user is

able to vote for or against every proposal. Votes count equally,
but users can accumulate votes by deciding for others who
have empowered them. The delegation of a vote is not bound
by a specific period of time and can be withdrawn at any
time. Proposals and ideas can be categorized by topics, types
of requirements, or system components. Users can decide for
which proposal or topic they delegate their votes and to whom.

Let’s assume one topic is the user interface of a system.
Within this topic users submitted different ideas and comments.
A specific user, say Alice, might be more interested or
more knowledgeable in other topics such as privacy and
data protection. Alice can delegate her votes for the subject
user interface to Bob since she trusts him based on previous
interactions with him. Bob’s votes now have a higher weight
within this subject. Alice can still take back her delegated vote
for any specific proposal within the subject and vote herself, e.g.
if she disagrees on a specific proposal. With the possibility to
give and get back votes, the decision process becomes “liquid”.
Users can delegate or change their delegated votes at any time
and at the levels of topic or proposal.

IV. DISCUSSION

We argue how Liquid Democracy could help to realize mass
user participation, discuss the applicability of such a paradigm
in RE, and sketch main realization directions.

A. Liquid RE for Addressing Mass Participation Challenges
Liquid Democracy is a promising approach that has been

developed and successfully applied for collective decision-
making within political parties and in companies [11], [19].

IE
E

E
 c

op
yr

ig
ht

ed
 p

ap
er

 - 
A

cc
ep

te
d 

fo
r p

ub
lic

at
io

n 
at

 IE
E

E
 R

E
 2

01
5 

- A
ut

ho
rs

' v
er

si
on

 o
f t

he
 w

or
k 



Tools that implement Liquid Democracy are Adhocracy
(liqd.net), Liquidizer (liquidizer.github.io), LiquidFeedback
(liquidfeedback.org), and Votorola (zelea.com/project/votorola/
home.html). Analogously, Liquid Democracy concepts can be
used to partly solve the challenges of implementing a mass
participation in RE (described in Section II) – towards a Liquid
Requirements Engineering. Table I summarizes the following
discussion.

1) Scalability: Liquid Democracy allows for a mass partici-
pation of users while outbalancing the scalability of the process.
The community serves as a valuable resource to manage the
participation process. Users manage themselves through votes
and coordinated discussions. Similarly, the Apple App Store
and the popular Q&A website Stack Overflow enable their
users to rate the helpfulness of others’ posts. This ranks the
posts and identifies the most relevant ones.

A structured, collaborative decision process supports the
monitoring, filtering, and refining of user input. Users perform
the filtering and the refinement through votes and discussions.
E-Democracy tools enable to monitor the activities and track
changes. Delegated voting minimizes the users’ workload since
they only participate to the extent they want to.

Nevertheless duplicates, or irrelevant contributions and
ideas might overcharge the community. Additional automated
approaches for automated assessment and preprocessing of con-
tributions would help users as well as analysts, developers, and
managers to overview the community and contributions. Such
automated tools might help comparing user input, assessing its
quality, and assigning it to a specific group of requirements,
topic, or a system component, e.g. by using machine learning,
data mining, and natural language processing techniques [8].

2) Motivation: Liquid RE will, as in politics, not solve the
problem of unmotivated users. However, it can establish an
inclusive, transparent, fair, and easy-to-use environment that
motivates committed users to contribute. It might converge to
a platform for gathering high quality input by active users.

A true involvement of users means that internal project
processes need to become transparent. A Liquid RE platform
can equally be used by all stakeholders. Within such a
platform, discussions – at least those that are related to
requirements and the users – will be conducted publicly. Users
can get feedback and follow what happens to their input

at any time. Users become a real part of the project and
the “community”. The opinions of users are recognized and
discussed by users, developers, and other stakeholders. All
these represent intrinsic incentives for motivating constructive
user contributions. Finally, users who are uninterested in a
certain user proposal or a topic can delegate their voices to
other concerned users of their choice – and possibly enjoy
the influence. Being aware of the power of their voices and
that even a small effort can make a change is an important
participation incentive. Nevertheless, additional incentives such
as monetary rewards, game badges, or special recognition in
the software itself might lead to a higher motivation of (other)
users and reach a broad and representative participation.

3) Conflicts: A major benefit of Liquid Democracy is the
possibility to resolve conflicts in a collaborative and fair way.
Delegated voting allows users with limited time or interest to
delegate their votes. This ensures that not only the voices of
a few core participants who “scream loudest” are recognized.
The recursive delegation also creates an implicit hierarchy that
typically has the final say in classical conflict situations.

The structured decision-making avoids exhausting circular
discussions. Setting a time frame to take a decision is important
for Requirements Engineering, as time is critical. The freeze
phases allow rethinking contributions aside from emotional
discussions. Users that do not agree with a proposal are not
forced to discuss it and can propose a different one instead. This
can mediate a debate and lead to different proposals. Depending
on the implementation of delegated voting, it is also possible
to vote for favorites and alternatives so that different proposals
do not get lost.

However, other than in politics, it will be hard to decide
how to delegate votes to unknown users. Users – and other
stakeholders as well – must build up a reputation and trust first.
In politics this happens outside of E-Democracy platforms.

4) Representativeness: Mass participation brings an in-
herent risk to exclude minorities. As for every democratic
participatory system, the challenge is to ensure the inclusion
and protection of minority groups – keeping a balance between
the “mainstream requirements” and those of the outliers.

At the same time, Liquid Democracy can give mavericks
a platform to promote new and innovative ideas. It enables
underrepresented groups or “outlier” users to have a say. Users
get a power to influence decisions about the software even
with low participation effort (i.e. one click for a vote).

Further, minorities become stronger through delegation. In
politics, the delegated representatives can pick up minorities’
wishes that otherwise wouldn’t gain importance.

5) Subjectiveness: Conservative users can hinder innova-
tion, as some experts highlighted. Experienced users, e.g.,
originally complained about the change in the user interface
of Microsoft Office 2007 (use of ribbons)3. Today ribbons are
widely recognized and used in other tools as well.

Liquid Democracy can help addressing the problem of user
subjectiveness and of communicating changes to users. Open

3redmondmag.com/articles/2007/10/01/word-2007-not-exactly-a-musthave

IE
E

E
 c

op
yr

ig
ht

ed
 p

ap
er

 - 
A

cc
ep

te
d 

fo
r p

ub
lic

at
io

n 
at

 IE
E

E
 R

E
 2

01
5 

- A
ut

ho
rs

' v
er

si
on

 o
f t

he
 w

or
k 



discussions of innovations and ideas can lead to more objective
views. Users themselves will convince others, who can base
their decisions on the input of experts or of fellow users.

Politicians reported that early information and involvement is
a key factor to promote fundamental change. Liquid Democracy
allows communicating and promoting such changes at an
early stage and reducing users’ concerns. To be applied in
RE, Liquid Democracy should be extended to support experts
and innovators. It might be necessary to bypass democratic
concepts and to give specific users and stakeholders higher
weighting without disregarding or discriminating others. The
rules should be transparent. Experts and innovators can discuss
ideas with users and explain decisions. Users do not have to
accept innovations when they are released with the software.

6) Misuse: The collaborative refinement and decision-
making can help to avoid misuse. An open discussion helps to
ensure the participation authenticity, as it is much harder to
manipulate a discussion between humans. However the voting
mechanisms (quorum, delegated voting) are points of attack.
Two types of manipulation are possible: i) a fake majority
can suppress a requirement wanted by the real majority or ii)
a fake majority can push a requirement that is unwanted by
a real majority. The latter will be less problematic, since a
user proposal has to undergo a whole refinement and decision
process, but might become crucial if the participation is biased.

Opening internal project data to the public is crucial and
risky as well. Expensive innovations from the company are
less suitable to publish in an early stage. The management
must outbalance to what extent the data can be disclosed.
Anonymization can reduce threats to users’ privacy. In politics,
this is not always possible or wanted. In Requirements
Engineering anonymization is more important as a user group
should be targeted rather than individuals.

B. Applicability of Liquid Requirements Engineering

Software products and their development projects and
processes are different and include various complex facets. One
important question is whether and which participation concepts
are applicable for which products and in which settings.

When discussing with the experts whether democratic
concepts can foster massive user participation, the answers
varied. Those who did not know about the capabilities of E-
Democracy platforms were more skeptical. Those who were
aware of such platforms were more confident, but also limited
the possible usage to particular tasks.

All experts were convinced about the potential of the
approach but stated that a meaningful use depends on the type
of project or the product. They suggested that this approach
would be fitting for open source projects, apps, and websites.
One went further stating: “It would be suitable for the product
development, but not for customized software”. We think that
while these settings represent “a good place to start” market
trends might force other rather conservative organizations to
rethink their approaches long term and include “more user
involvement” as this is expected in the age of social media,
open source, and high competition. Certainly, it is an important

task for the RE community to discuss and evaluate mass
participation approaches on different types of projects and
products. One expert said: “Far more stakeholders can be
involved in the RE process while the amount of overhead stays
about the same, though the activities and techniques used will
be different”. One claimed: “Instead of transferring traditional
RE activities we should develop new ideas”.

We think that the complexity of Liquid Democracy platforms
must be reduced or completely hidden from users to lower
entry barriers. The participation should be possible in-situ [23]
within the work environment of the users, e.g. in social media
platforms, in the operating system, or in the app itself. Finally,
we think the challenge of representativeness can be addressed
by extending Liquid Requirements Engineering with proactive
participation requests and stratified sampling – two concepts
that are successfully used in the field of market research. This
requires knowing the whole user population and establishing
communication channels with the user – at least implicitly,
e.g., via distribution platforms such as app stores. Finally,
in Requirements Engineering it is, other than in democracy,
meaningful to give different weighting of the participants’
voices, according to the user group or expertise.

C. Research Directions

Liquid Democracy can not surely solve the challenges of a
new kind of Requirements Engineering. But it shows that the
RE community should think out of the box to accommodate
the complexity and the scale of the crowd and ensure that we
get their requirements and voices efficiently and precisely. We
proposed considering Liquid Democracy as starting point to
think about multidisciplinary concepts for realizing the vision
of “requirements from the masses and requirements for the
masses”. To deal with the challenges of this vision we propose
to investigate the following research directions.

Diversity over Majority. Majority decisions may exclude
minorities. Masses might hinder innovation but amongst the
masses one can find mavericks. Thus, it is important to
include outliers. A highly diversified crowd shall be attempted
instead of a broad mainstream. Approaches such as proactive
participation and appropriate sampling should be further
investigated.

Transparency over Feedback. Users are different. While
some favor to be asked for their opinion others get quickly fed
up. Every user should decide how far she wants to contribute.
The processes and decisions must be transparent. Researchers
should examine how to open up internal processes without
threatening the business goals of software projects.

Appreciation over Reward. Rewards, e.g. in form of
monetary or non-monetary benefits can be responsible for
corruption and bias users and their input. A direct recognition
of what users have achieved will influence them less. The active
involvement of users in decisions together with developers
and other stakeholders is motivating. Qualitative participation
must be publicly honored. The only motivation within social
platforms for users is to gain public attention. Testing and
evaluating different incentives will be a crucial task.

IE
E

E
 c

op
yr

ig
ht

ed
 p

ap
er

 - 
A

cc
ep

te
d 

fo
r p

ub
lic

at
io

n 
at

 IE
E

E
 R

E
 2

01
5 

- A
ut

ho
rs

' v
er

si
on

 o
f t

he
 w

or
k 



Dynamic over solid hierarchies. Crowdsourcing helps to
keep knowledge about the users up to date. It is not only about
what users want, but also how the requirements and preferences
evolve. Competitive technology appears, trends prevail, users
themselves and their perception change after a while. Thus,
solid structures must be able to change dynamically over time.
Future research must work out liquid concepts and processes
that support these changes.

V. RELATED WORK

The topic is present for over four decades and widely known
realization approaches have been developed and are reflected
in software development methodologies [1], [8], [23].

Concerning massive and systematic user involvement in RE
there are two recent trends: direct (or targeted) and indirect
(or implicit) involvement. Requirements Bazaar covers the
direct involvement and is perhaps the closest to our work.
In this approach users can register to issue trackers and
formulate wishes, which can then be adopted and implemented
by software developers [20]. The work focuses on open source
projects while we discuss the potentials and risks of mass,
systematic, and democratic involvement for RE in general.
While extending issue trackers with social media features is
promising to realize collaborative and structured refinements
of user proposals, it does not address all challenges of massive
user participation [5], as discussed in Section II. For an
indirect, implicit user involvement researchers suggested to use
machine learning, data mining, and natural language processing
techniques to analyze user feedback (e.g. in app stores) [8],
[18], as well as usage and context data at run time to better
understand users and their needs [15]. We think that these
approaches are complementary to our proposed vision and
should be combined in the future.

VI. CONCLUSION

We discussed the vision of “requirements for the masses
and requirements from the masses” with experts from RE,
politics, and market research. Experts who already have
experience with massive user involvement think that traditional
RE approaches and tools will not work for systematic, crowd-
based requirements. We revealed critical voices saying that
the RE community must revisit traditional RE approaches
to turn this vision into reality. Main challenges that occur
when users massively participate in RE include dealing with
scalability, motivation, conflicts, representativeness, subjective-
ness, and misuse. We proposed using E-Democracy and Liquid
Democracy concepts such as delegated voting, quorums, and
a community-based management of users’ contributions for
dealing with these challenges. Future research can investigate
for which projects a massive, democratic user participation
is feasible and to which extent. Our research directions will
hopefully help adjusting RE to the age of critical demanding
users who expect their voices to be taken seriously.

VII. ACKNOWLEDGEMENT

We thank the RE15 reviewers and the experts for their feed-
back: S. Adam & J Doerr (Fraunhofer), R. Ali (Bournemouth

U.), C. Brosda (City of Hamburg), A. Hoffmann (Siemens), S.
Körner (Pirate Party), K. Schneider (Leibniz U.), M. Nayebi
(U. of Calgary), F. Dalpiaz (Utrecht U.), A. Neus (GfK).

REFERENCES

[1] M. Bano and D. Zowghi. A systematic review on the relationship
between user involvement and system success. Information and Software
Technology, pages 148–169, 2015.

[2] G. Beenen, K. Ling, X. Wang, K. Chang, D. Frankowski, P. Resnick, and
R. E. Kraut. Using social psychology to motivate contributions to online
communities. In Proceedings of the ACM Conference on Computer
Supported Cooperative Work, pages 212–221, 2004.

[3] J. Behrens, A. Kistner, A. Nitsche, and B. Swierczek. The Principles of
LiquidFeedback. Interaktive Demokratie e.V., 2014.

[4] B. Boehm and A. Egyed. Software requirements negotiation: some
lessons learned. In Proceedings of the 20th International Conference on
Software Engineering, pages 503–506, 1998.

[5] A. Chadwick. Web 2.0: New challenges for the study of e-democracy
in an era of informational exuberance. I/S: A Journal of Law and Policy
for the Information Society, 2008.

[6] E. G. Clary and M. Snyder. The motivations to volunteer theoretical
and practical considerations. Current directions in psychological science,
pages 156–159, 1999.

[7] L. Galvis-Carreño and K. Winbladh. Analysis of user comments: an
approach for software requirements evolution. In Proceedings of the
35th International Conference on Software Engineering, 2013.

[8] E. Guzman and W. Maalej. How do users like this feature? a fine
grained sentiment analysis of app reviews. In Proceedings of the 22nd
International Requirements Engineering Conference, 2014.

[9] B. N. Hague and B. Loader. Digital Democracy: Discourse and Decision
Making in the Information Age. Routledge, 1999.

[10] J. Hamari, J. Koivisto, and H. Sarsa. Does gamification work? – a
literature review of empirical studies on gamification. In Proceedings
of the 47th Hawaii International Conference on System Sciences, pages
3025–3034, 2014.

[11] S. Jabbusch. Liquid democracy in der piratenpartei. Master thesis,
University of Greifswald, 2011.

[12] J. Kruger and D. Dunning. Unskilled and unaware of it: how difficulties
in recognizing one’s own incompetence lead to inflated self-assessments.
Journal of personality and social psychology, page 1121, 1999.

[13] J. Lanier. Digital maoism: The hazards of the new online collectivism.
Edge: The Third Culture, 2006.

[14] K.-Y. Lin and H.-P. Lu. Why people use social networking sites: An
empirical study integrating network externalities and motivation theory.
Computers in Human Behavior, pages 1152 – 1161, 2011.

[15] W. Maalej and D. Pagano. On the socialness of software. In
9th International Conference on Dependable, Autonomic and Secure
Computing, pages 864–871, 2011.

[16] B. Mako Hill. The institute for cultural diplomacy and wikipedia. 2013.
[17] D. Pagano and B. Brügge. User involvement in software evolution

practice: A case study. In Proceedings of the 35th International
Conference on Software Engineering, pages 953–962, 2013.

[18] D. Pagano and W. Maalej. User feedback in the appstore : an
empirical study. In Proceedings of the International 21st Conference on
Requirements Engineering, pages 125–134, 2013.

[19] A. Paulin. Through liquid democracy to sustainable non-bureaucratic
government. In Proceedings of the Conference for e-Democracy and
Open Government, pages 205–217, 2014.

[20] D. Renzel, M. Behrendt, R. Klamma, and M. Jarke. Requirements bazaar:
Social requirements engineering for community-driven innovation. In
21st International Requirements Engineering Conference, 2013.

[21] R. Ryan and E. Deci. Intrinsic and extrinsic motivations: Classic
definitions and new directions. Contemporary educational psychology,
pages 54–67, 2000.

[22] P. Seebach. Baby duck syndrome: Imprinting on your first system makes
change a very hard thing. IBM DeveloperWorks, 2005.

[23] N. Seyff, G. Ollmann, and M. Bortenschlager. irequire: Gathering end-
user requirements for new apps. In 22nd International Requirements
Engineering Conference, pages 347–348, 2011.

[24] A. Terceiro, L. Rios, and C. Chavez. An empirical study on the structural
complexity introduced by core and peripheral developers in free software
projects. In 24th Brazilian Symposium on Software Engineering, pages
21–29, 2010.

IE
E

E
 c

op
yr

ig
ht

ed
 p

ap
er

 - 
A

cc
ep

te
d 

fo
r p

ub
lic

at
io

n 
at

 IE
E

E
 R

E
 2

01
5 

- A
ut

ho
rs

' v
er

si
on

 o
f t

he
 w

or
k 


	Untitled



